29 回答
但这里摆在这些人脸识别技术提供商面前的一道难题是,人脸识别技术自身并很难构成一项单独的应用,必须与其他业务或者产品结合。比如技术+摄像头,成为智能视频监控设备,或者与传统支付产品结合,在密码/手机验证码上再加一层人脸识别验证,类似还有ATM机上增加人脸识别,才能在特定场景中形成具备商用价值的应用。 在上述背景下,人脸识别技术提供商与应用场景之间,存在一定的距离,它们不得不站在其他产品或商业模式的后面,导致缺乏对场景的深入把控,甚至难以获得升级技术赖以为生的场景数据,而缺乏对场景的把控,将导致技术本身难以通过有效的场景深耕而获得质变。 因此,我们看到了这几家人脸识别技术供应商,纷纷与在安防等领域具备场景纵深的企业深度合作。如商汤科技与老牌安防上市公司东方网力成立合资公司深网视界,利用双方优势推动人脸识别技术在安防产业的落地,另外还有云从科技绑定智慧城市上市公司佳都科技,以及依图科技+传统身份识别领域解决方案神思电子的案例,当然少不了旷视科技自身的阿里系背景,毕竟单靠技术算法本身,在缺乏场景深耕的情况下是难以有所作为的。 通过场景+技术这两个视角,观察这几家公司走向的逻辑就清晰了:第一、是否具备人脸识别应用场景深耕的禀赋,或者能与具备场景的合作方深度绑定?第二,能否在具体场景中取得商业化突破,并反映在具体的销售收入数据上?第三,回归到算法技术,除了CNN等传统计算机视觉技术外,是否能取得技术的突破,比如引入人脸3D信息、多特征融合、或者在1:N/N:N上海量人脸比对场景中更优秀的搜索策略?最后这点可反映在各公司发表的论文主题及质量上。 题主关心的上述几家公司谁能跑到最后这个问题,目前老实说还很难下结论,但可以肯定的一点是,人脸识别的市场规模是支撑不起这些公司同时存活的。所谓的场景深耕,就是紧密围绕场景需求,以商业上能接受的代价(价格、计算延迟、维护性等),针对场景的特征并大量收集场景数据,不断调试方法或者使用多个方法的组合,走过一轮轮alpha、beta到zeta的版本号,最终实现产品化,其过程并不是一个算法打天下这么简单。